
1

Pavlin Dobrev
Research and Development Manager

OSGi Service Platform for the
Development of the Mobile and

Embedded Applications

2

OSGiOSGi OverviewOverview

OSGiOSGi R4 ExtensionsR4 Extensions

OSGiOSGi ProductsProducts

ResourcesResources

ExamplesExamples

Agenda

3

Driving Market Challenges

Device evolution
• Extended connectivity
• Shorter life cycles
• Higher complexity
• Dynamic deployment

Service Provider
• New services and apps
• Content provider
• User portals
• CRM, Billing

Development
Shorter development cycles

Scalable platforms
Aftermarket device access

Feature complexity

•
•
•
•

Infrastructure
Telecommunication

Administration
Deployment

•
•
•

4

OSGi Overview
Mission

5

OSGi – The Mission

“Our mission is to specify, create, advance, and promote an open
service platform for the delivery and management of multiple
applications and services to all types of networked devices in
home, vehicle, mobile and other environments”.

„The OSGi Alliance serves as the focal point for a collaborative
ecosystem of service provider, technology, industrial, consumer
and automotive electronics communities“.

Source: OSGi Homepage

6

OSGi – The Mission

Device evolution
• More resources available
• Extended connectivity
• Shorty life cycles
• Higher complexity

Service Provider
• New services
• Content provider
• User portals
• CRM, Billing

Development
Shorter development cycles

Scalable platforms
Aftermarket device access

Feature complexity

•
•
•
•

Infrastructure
Telecommunication

Administration
Deployment

•
•
•

OSGi

7
Image Source: OSGi Homepage

OSGi – The Mission

8

OSGi Overview
Alliance

9

History of the OSGi Alliance

The OSGi Alliance is an open organization
Established in 1999, currently 44+ members

Membership spans many industries

Voting members treated equally

Membership information available at www.osgi.org

Companies start work on Java Embedded Server in 1998

Open Services Gateway Initiative
launched in March 1999

First Member Meeting: London – May 1999

Specification Releases:
R1 – May 2000 (JES Framework)

R2 – October 2001 (Gateway Management)

R3 – March 2003 (Automotive)

R4 - October 2005 (Core + Mobile + Vehicle)

10

OSGi Alliance

Alpine Electronics Europe Gmbh
AMI-C
Aplix Corporation
Atinav Inc. *
Belgacom
BMW Group
Cablevision Systems
Computer Associates
Deutsche Telekom AG
Echelon Corporation
Electricité de France (EDF)
Ericsson Mobile Platforms AB
Esmertec
Espial Group, Inc. *
ETRI Electronics and Telecomm-

unications Research Institute

France Telecom
Fraunhofer Inst. for Integrated Circuits IIS *
Gatespace Telematics AB *
Gemplus
IBM Corporation
Insignia Solutions *
Intel Corporation
KDDI R&D Laboratories, Inc.
KT Corporation
Mitsubishi Electric Corporation
Motorola, Inc.
NEC Corporation
Nokia Corporation
NTT
Oracle Corporation
Panasonic Technologies, Inc.
Philips Consumer Electronics
ProSyst Software GmbH
Robert Bosch Gmbh

OSGi Members

11

OSGi Alliance

Samsung Electronics Co., Ltd.
SavaJe Technologies, Inc. *
Sharp Corporation
Siemens AG
Sun Microsystems, Inc.
Telcordia Technologies, Inc.
Telefonica I+D
TeliaSonera
Toshiba Corporation

coming soon: Vodafone

* Contributor Level Members

OSGi Members

12

OSGi – The Organization

Working Committees
Marketing Working Committee
Market Requirement Working Committee

Expert Groups
Core Platform Expert Group
Vehicle Expert Group
Architecture Expert Group
Mobile Expert Group

13

OSGi Alliance

Automotive
Smart Home
Mobile Phones
Facility Management
Consumer Electronics
Health Care
Industry Automation
.........

Vertical market
positioning
reflected in
with R4

Strong horizontal positioning

OSGi Markets: All !!

14

OSGi Alliance Technical Process

Requirements
Committee

Informal
Requirement

TSCRFP Allocation RFC

OSGi
Specification

Technical
Issues

Feedback Feedback

CPEG

Specification
Writing

RFC

Appropriate
Expert Group

Test suite and
reference
impls..

15

OSGi Roadmap

16

Soon to be released for R4

OSGi Service Platform, Mobile Specification Submitted to
JCP for adoption as JSR-232 “Mobile Operational
Management”

Jon Bostrom, Nokia, and Venkat Amirisetty, Motorola, are co-
specification leads for JSR-232.

Early Draft Review started 7 October 2005

Target Release Date: 1Q2006

OSGi Service Platform, Vehicle Specification
Hans-Ulrich Michel, BMW, and Olivier Pave, Siemens AG, are
co-chairs of the Vehicle Expert Group

Liaison with ERTICO Global System Telematics (GST) Project

Target Release Date: 2Q2006

17

OSGi Overview
Market situation

18

Target Markets

Mobile Devices
180M handsets/ year
Starting in 2005, first OSGi – enabled handsets will be shipped
Most interesting market due to size and short life cycle

Automotive Infotainment/ Telematics
60M cars/ year
OSGi already selected by BMW, Ford, GM,
VW, Renault, Hyundai
Commercial applications shipping
2 years to mass deployment

Home Networking
190M white goods, 40M DSL Modem/
STB devices per year
OSGi selected by Siemens, Miele, V-Zug,
Motorola, Philips, Samsung, …
Various products shipping, long lifecycles

Mobile

Internet

Desktop

Servers

Industrial
Automation

Home
Automation

Communications

Smart
Phones

Vehicle

Telematics

19

OSGi Market situation

Is OSGi accepted from the market?

Telematics
yes deployed in BMW 5series, 6series
yes deployed in various fleet management systems
yes deployed in Bombardier trains
yes to be deployed in upcoming series cars
Residential
yes deployed in Shell/Motorola Home Genie package
yes deployed in various White Goods applications
yes deployed in Philips remote controller iPronto

20

OSGi Market situation

Is OSGi accepted from the market?

Other markets
yes deployed in spanish ADSL router
yes deployed as facility mgmt. system at Microsoft (!)
yes deployed as airport parking lot control system
yes to be deployed in German Health Care system
yes to be deployed in various other real world setups

Mobile
yes Nokia, Motorola actively develop mobile

specification

21

OSGi Overview
Terms and basic functions

22

OSGi – Terms & Basic Functions

Open

Service

Gateway

Open Service Gateway Specification

Open and dynamic platform

Run-time environment for services and apps

Gateway for connecting local devices and
networks with wide area networks

Specified by a heterogeneous standardization
consortium

23

OSGi – Terms & Basic Functions

OSGi Actors
Service Gateway (SG)
• (Embedded) Platform hosting an OSGi framework
• Runtime environment for services and applications
Gateway Operator (GO)
• Runs and administers Service Gateways
• Deployment and supervision of services and data
Service Provider (SP)
• Creates and provides new services to Gateway Operator
• Example: MP3 application
Content Provider (CP)
• Provides or receives data from Service Gateways (over GO)
• Example: MP3 files for MP3 service

24

OSGi – Terms & Basic Functions

OSGi Actors

Services,
Data

Back-
end

Service Gateways

25

OSGi – Terms & Basic Functions

Service Gateway = Device + OSGi Framework + Services

OSGi Framework = Mini Application Server

Service Gateway Architecture

26

OSGi – Terms & Basic Functions

Service Gateway Architecture

min. J2ME CDC/FP

27

OSGi – Terms & Basic Functions

OSGi Framework: key facts

Java based runtime environment for services & apps
Primarily focused on needs of embedded systems
Dynamic nature: installation, updates, removals
of services at runtime (Life Cycle Management)!
Dynamic Service Registry
Open for remote management and administration
Dynamic resolving of package dependencies
Requires J2ME CDC/FP based runtime

28

OSGi Overview
Bundles & Services

29

OSGi – Bundles & Services

Bundles

Content of Bundles:
• Java Bytecode
• Native Code (eg. shared lib)
• Resouces (eg. XML files,
images, language texts, etc.)

• any files possible

Description
• Container for Services,
applications and libraries

• Archive file (Java jar format)
• Dynamically loadable, resolvable
and runnable by OSGi framework

gsm.jar

Interfaces to Framework

30

OSGi – Bundles & Services

OSGi Bundle

A bundle registers 0 to N services in the framework
The fw itself is represented as the System Bundle
Manifest file: definition of bundle interface
(Import, Export, Services, Version, Activator, …)
Interfaces between bundles: services and shared libs
Each bundle is loaded in a separate Class Loader!
The fw is responsible to support the bundle’s life
cycle (incl. resolution of dependencies).

31

OSGi – Bundles & Services

Bundle Life Cycle

From:
OSGi Service-Platform
Release 3, Chapter
4.8.3, Page 58

32

OSGi and Native Code

OSGi Bundle: Native Code

A bundle can contain native libraries
Framework checks the OS, CPU, language, etc.
The life-cycle of the native libraries related to the
life cycle of the corresponding bundle
Java Code can access the native libraries by using
JNI (Java Native Interface)

33

OSGi – Bundles & Services

The two meanings of the word “service”

Service in terms of application qualifier
A service may contain 0 to N software compontents
(installed on fw and on backend)
Example: Mobile Sales Support Tool

Service in terms of a registered interface in fw
A software component with 1 or more Java
interfaces that has been registered as a “Service”
within the service registry of the framework.

34

OSGi – Bundles & Services

GPS Service
Service

Application

e.g.
POI ApplicationService

Database

Services Example

35

OSGi – Bundles & Services

Service

A service may come and go and runtime !!!!
Consequently, services need to be tracked
A service may have 1 to N interfaces
A service might be registered multiple times with
a different set of properties
A service might be instantiated multiple times
Service must be acquired from the Service Registry

36

OSGi Framework

OSGi – Bundles & Services

Service Registry

37

OSGi – Bundles & Services

Service Registry

Dynamic database holding all service references
A service can only be obtained from the registry
Support of Filter of service object search
Provides service object references to the client
Support of ServiceFactory for multiple service
instanciation
Contains ranking algorithm for identification of
service that fit’s best to a client’s request.

38

OSGi Overview
Remote Management

39

OSGi – Terms & Basic Functions

OSGi Actors

Services,
Data

Back-
end

Service Gateways

40

OSGi – Backend

Remote Management Ref. Architecture:

OSGi Service-Platform
Release 3.0, chapter 3.1.2,
page 22

41

OSGi – Backend

The remote management operations must be
performed by a Management Agent

Initial Provisioning Spec. (optional) defines the
first connection between the backend and the
gateway

Remote Management Reference Architecture
(fig. on the previous page)

Management Agent Bundles are defined by the
gateway operator

Defined by OSGi:

42

OSGi – Backend

The protocol(s) between backend and
service gateway

Implementation recommendation for the
management agent

Security architecture

Goal: Not to restrict the specific needs of the
gateway operators und service providers

Not defined by OSGi:

43

OSGi Overview
Excurs: MIDP versus OSGi Model

44

Excurs: MIDP versus OSGi Model

Almost unlimited Java core featuresLightweight applications

APIs and application code updates & upgrades possible at
runtime

Static set of APIs

Focus: component model, not application modelFocus: MIDlet application model

Horizontal market orientationMarket dedication: mobile phones

CDC 1.0 / FP 1.0 basedCLDC based

OSGi R3 ModelMIDP Model

Main differences

45

Driving issues for MEG (R4)

Overview of stacks

OS & Drivers

CLDC

Core APIs

OS & Drivers

native device management framework

Core APIs

MIDP OSGi MEG Other

M
gm

r

MIDP

MIDlet

MIDlet(s) MEGlet(s) Other(s)

CDC

FP
JNI

MIDlets only
Only MIDlet at
a time

Multiple apps (types, instances)
Core APIs are not static

46

OSGi Overview
OSGi Specification Details

47

OSGi: Framework Specification

Base platform: the framework

Bundle & service
administration (life
cycle management,
dependencies)
Service registry
Event transport
Boot management
Permissions

Runtime environment for OSGi services

48

OSGi: Package Admin Specification

The Package Admin Interface

Bundles can come and go at any time. This requires
the bundle dependencies and states to be recalculated
PackageAdmin is a service interface registered by fw
It provides information to a Management Agent about
a bundle’s exported packages

49

Lazy and eager update

Package sharing:
Classes
Resources

Package Management

Framework

50

OSGi R3: Permission Admin Specification

Permission Administration

The framework keeps a central store of permissions
A bundle has dedicated or default permissions
The PermissionAdmin service (registered by fw)
provides read/write access to the permissions store
Bundle permissions can be modified before, during
or after a bundle has been installed.

Note: permission concept is based on The Java
Security Architecture

51

OSGi R3: Log Service Specification

OSGi based logging: the Log Service

The LogService provides means to write log messages
The LogReaderService can retrieve log entries
Log changes can be tracked by a listener
Categorization of log entries by Log Levels
Persistency is not specified

Important tool for keeping
logging information

52

OSGi: Configuration Admin Specification

Configuration Admin & ManagedService

Centralized management of bundle configurations
ConfigurationAdmin Service:
- Maintains repository of bundle configs
- Provides API to access (read/write) this data
- Delivers configurations to bundles automatically
Runtime configuration changes of bundles!
ManagedServices:
- Service registered by bundle to receive config data
- Used by ConfigAdmin to pass config data
Persistency layer not defined by OSGi

53

OSGi: Service Tracker Specification

Track your services!

The dynamic environment of OSGi requires services
to be tracked
OSGi provides a utility API called ServiceTracker
Features:
- get service references for specified service(s)
- receive callbacks in case of service state changes
- filtering is possible, of course.

Partly shields the dynamics.

54

OSGi Overview
Benefits and disadvantages

55

At development time
Standardized technology
Availability of ready products and functions
Modularity based on a good component model
Reusable components
Parallel development and portability
Complementary to other existing standards
Fast und secure programming environment
Reduction of development time and costs !!

OSGi Benefits

56

At run time
Standardized platform base technology
Dynamic installation/update of software components
Offering of new services
Offering of services from different SPs
Remote administration and configuration
Remote diagnostics

OSGi Benefits

57

OSGi Disadvantages

Some general disadvantages
Added overhead for RAM and flash
Little amount of vertical services defined
Complex specification process which involves many
participants with different interests
Missing standard GUI framework model

58

Hardware Requirements

400 MHz

200 MHz

50 MHz

50 MHz

CPU

> 32 MB

32 MB

16 MB

8 MB

RAM

> 32 MB

16-32 MB

8 MB

4 MB

Flash

High End

Medium

Low End

Minimum (Record)

Profile

Typical hardware configurations

59

OSGi Release 4 Extensions

60

OSGi R4 Documentation Plan

61

Core Specification Defines The

Framework – rewritten and updated

Module Layer

Lifecycle Layer

Service Layer

Framework Services

Package Admin - updated

Start Level

Conditional Permission Admin - updated

Permission Admin - updated

URL Handlers

62

Framework Layering

63

Service Compendium

Log Service - updated

Http Service - updated

Device Access

Configuration Admin -
updated

Preferences Service -
updated

Metatype - updated

Wire Admin

User Admin

IO Connector

Initial Provisioning

UPnP Device - updated

Declarative Services - new

Event Admin - new

Service Tracker - updated

XML Parser

Position

Measurement and State

Execution Environments - updated

64

Service Programming Model With R4 – Declarative Services

Simplifies the service oriented programming model (XML description)

Assists bundle developers in their work

Handles the dynamic of the service objects
R3 Programming Model
META-INF/Manifest.mf
Bundle-Activator: com.velingrad.Hello

com.velingrad.Hello.java
public class Hello implements BundleActivator
{
public void start(BundleContext bc)
{
ServiceTracker tracker = new
ServiceTracker(bc,
"org.osgi.service.log.LogService", null);
tracker.open();
LogService log =
(LogService)tracker.getService();
if (log != null)
{
log.log(LogService.LOG_INFO,"Hello
Velingrad");
}
else
{
// ??? what to do here
}
}
public void stop(BundleContext bc) {}
}

R4 Programming Model
META-INF/Manifest.mf
Service-Component: OSGI-INF/activator.xml

OSGI-INF/activator.xml
<?xml version ="1.0" encoding="UTF-8"?>
<component name="example.Hello">
<implementation class="com.velingrad.Hello"/>
<reference name="LOG"
interface="org.osgi.service.log.LogService"/>
</component>

com.velingrad.Hello.java
public class Hello
{
protected void activate(ComponentContext cc)
{
LogService log =
(LogService)cc.locateService("LOG");
log.log(LogService.LOG_INFO,"Hello Velingrad");
}
}

65

New in R4 specifications

Generic Event Model

The problem in R3:
Usual event pattern for applications:
- listening parties register services with dedic. interf.
- event source references all services with such
dedicated interfaces and passes the event over

Since services (event source service, event listener
services) may come and go, this results in extra
programming efforts and potential failures

66

New in R4 specifications

Generic Event Model

The solution in R4:
Central Generic Event service
Simple topic based publish/subscription model
Synchonous and asynchronous event delivery
Support for wildcards
Easy binding to native event sources/consumers

67

Mobile Architecture Overview

68

Mobile Service Platform - OSGi specifics for mobile devices

MEG is actively working to define Mobile Service Platform (MEG R4).
The official release is scheduled for the first quarter of 2006.

Security and Policy
Framework

Permissions and
Signatures

Generic Events
Mechanism

Deployment model and
infrastructure

Application model and
lifecycle

Device management
functionality

..and for the Mobile Service Platform
the enhancements are:

OSGi and MEG working for mobile devices

MEG R4 will be based on OSGi
R4 Framework which has been
extended from the R3 Framework
with…

69

Deployment Package

Deployment Package

Based on JAR Format

Manifest describes the
resources and associates
them with a Resource

Processor

Fix Packages

Provide only updated
contents

70

Device Management

The basic OSGi architecture is management protocol agnostic

Provides a model where many parties can participate

What is missing is an abstraction to manage a device in detail

The OMA DM protocol is dominant in the mobile device market

Will be supported by a wide range of devices

The MEG therefore supports the OMA DM management model with
the Dmt Admin Service

71

DMT – Introduced by OSGi R4 MEG

The management tree organizes all available management objects in the device as a
hierarchical tree structure where all nodes can be uniquely addressed with a URI

./SyncML/DMAcc/xyzInc

T h e R o o t

” ./”

D M A c c O S G i O p e ra to rV e n d o r

S c re e n
sa v e r

R in g
s ig n a ls

… .

M yM g m S e rv e r

x y z In c

72

DMT Basics

Introduced in support of the SyncML DM (now OMA DM) protocol

DMT is a tree of interior and leaf nodes

All nodes in the data tree have names

Only leaf nodes have values

Base value types:

Integer

String

Boolean

Binary

XML

(b64 | bin | bool | chr | int | node | null | xml | date | time | float)

73

DMT Basics

OMA DM defines five possible operations on the nodes of DMT

Add,

Get,

Replace,

Delete,

Execute

ACL of a node specified which entity is permitted to perform the different
operations on that node.

The DMT is dynamic and it is not required to be stored

74

ProSyst Plugin Structure – OSGi Mobile Management Tree

Framework Package Admin Permission
Admin

Condittional
Permission

Admin

OSGi Core

Config
Admin

Log
Service

Monitor
Admin

DMT Admin

Config
Plugin

Log
Plugin

Deployment
Plugin

Deployment
Admin

Monitoring
Plugin Policy PluginApplication

Plugin

Application
Management
Framework

Download
Plugin

DmtPlugin

DmtPluginDmtPlugin DmtPlugin DmtPlugin DmtPlugin DmtPlugin DmtPlugin

DMT Plugins

Management Services

OMA DM Client

OMA_ALERT

DmtAdmin

Download
Agent

AlertSender

CU Plugin

DmtPlugin

CU Admin

ProSyst CU Model

CU

CU

CUDMT CU

Standard
OMA DM
Objects

DmtPlugin

75

Application Model

Generic Application Model - A generic model
that is intended to abstract different application
models so they can be treated as one

Provides for third party screen managers

Provides for rich GUIs

Icons, help, etc.

Can monitor the state of running
instances

Interacts with JSR 211 Content Handlers

Foreign Application Model - defines how non-
OSGi Applications can access and provide
services

Header usage

Access to Framework class

76

Vehicle Profile

The OSGi Vehicle Profile shares its architecture with the Mobile Profile

The Vehicle Profile provides specific vehicle oriented services

The Vehicle Profile uses many more of the Core Compendium Services
because it is more mature

It is likely the vertical profiles will come closer in the future

• Start Level Service
• URL Handlers
• Package Admin Service
• Permission Admin Service
• Log Service
• Http Service
• Device Access
• Configuration Admin Service
• Metatype(2) Service
• Preference Service
• User Admin Service

• Wire Admin Service
• IO Connector Service
• Declarative Services
• Event Admin Service
• Power Management Service
• Diagnostic Service
• Service Tracker Utility
• XML Parser Utility
• Position Utility
• Measurement and State Utility

77

Vehicle Profile – Power Management

The power management service makes
power management pluggable

The system power state can be set externally

Full Power

PM Active

Suspend

Sleep

Power off

is mapped to different device power state

D0-D3 power states

Power manager can take device specific
capabilities in consideration

An observer bundle can follow the transitions
in the system and device power state

78

OSGi Products
Products available on the market

79

OSGi Products - ProSyst

Development
IDE

Remote Management
Software

Deploy and Deliver Develop and Debug Manage and Maintain

Embedded
Software

80

OSGi Products - Siemens VDO

81

82

83

OSGi Products - Open Source

84

Relation to JCP

85

Resources

http://www.osgi.org

http://www.osgi.org/blog/index.html

http://www.ibm.com/embedded

http://dz.prosyst.com

http://member.openmobilealliance.org/ftp/public_documents/dm/Pe
rmanent_documents/

http://www.openmobilealliance.org/release_program/index.html

http://eclipse.org/equinox

86

Thank you! For further information please contact us!

Pavlin Dobrev

ProSyst Labs EOOD

Vladajska Str. 48

Sofia 1606, Bulgaria

Tel. +359 2 952 35 81

Fax +359 2 953 26 17

p.dobrev@prosyst.com

www.prosyst.com

dz.prosyst.com – ProSyst Developer Zone (free registration)

Contact

Member of:

87

Source Code

OSGi Programming
Theory and Hello World Example

These slides are not intended to be presented.
They will be available for all users that download the presentation

Practice Session

1. Hello Bundle.zip

88

“Hello World” Bundle

Purpose of the Hello World bundle

• Demonstrate the Bundle lifecycle

• Demonstrate how a bundle is developed, packed and deployed manually

• Demonstrate how a bundle is developed, packed and deployed using the
OSGi plug-in

89

Theory: OSGi Introduction

Basic Interfaces

90

Theory: OSGi Introduction

Bundle: the BundleActivator interface

Implemented by some class in bundle
Used by framework to start and stop a bundle
Must be assigned through manifest
Interface signature:
package org.osgi.framework;

public interface BundleActivator {
// start method
public void start (BundleContext) throws Exception;
// stop method
public void stop (BundleContext) throws Exception;

}

91

Theory: OSGi Introduction

Bundle: the BundleContext interface

Implemented by framework
Represents the execution environment of the bundle
Acts as a proxy between framework and the bundle
Instantiated by framework on bundle start

Doc: OSGi R3 Spec, chapter 4.23.5, page 98

92

Theory: OSGi Introduction

Bundle: the BundleContext interface

What bundles can do with BundleContext:
Register services in the framework
Retrieve services from the framework
Subscribe to framework events
Obtain a persistent storage area
Interrogate other bundles
Install new bundles in the framework

93

Theory: OSGi Introduction

Bundle: the Bundle interface

Implemented by framework
One Bundle object instantiated for each bundle (by fw)
Represents the bundle and its state
Used to observe and control a bundle’s life-cycle
Can list all registered services
Can list all used services

94

Theory: OSGi Introduction

Never Forget!

Whatever you do – keep in mind
that bundles and service
come and go at runtime!

95

“Hello World” Manually

Creating a Hello World bundle manually

Step 1: Create a working directory: /osgi_test/
Step 2: Create a BundleActivator Implementation class

• Create the package directory: /osgi_test/examples/hello
• Create in it a Java file containing the BundleActivator implementation:

public class Activator implements BundleActivator {
public void start(BundleContext bc) throws Exception {

System.out.println("Bundle Started !!");
}
public void stop(BundleContext bc) throws Exception {

System.out.println("Bundle Stopped !!");
}

}

96

“Hello World” Manually

Creating a Hello World bundle manually

Step 3: Create a Manifest file:
• Location of the file: /osgi_test/META-INF/Manifest.mf
• Content of the Manifest

Bundle-Activator: examples.hello.Activator
Bundle-Category: examples
Bundle-Vendor: Nokia
Bundle-Version: 1.0
Bundle-Name: Hello World Bundle

97

“Hello World” Manually

Creating a Hello World bundle manually

Step 4: Compile the Activator.java with javac
javac –classpath %MBS%/lib/frameworklib.jar examples/hello/*.java

Step 5: Pack the bundle with the jar.exe from the JDK
jar cmf META-INF/Manifest.mf hello.jar examples/hello/*.class

Step 6: Optionally write a script file that will atomize these two steps

Step 7: Deploy the bundle on the framework using the mBS console:
fw>$ install –s /osgi_test/hello.jar

98

ProSyst OSGi Eclipse Plug-in

OSGi Bundles

Install
Bundle

Code
Generate

Framework Console

New OSGi
Project or
Bundle

Java
Editor.
Code of the
Bundle
Activator

Make Bundle
jar file

99

“Hello World” Eclipse

Creating a Hello World bundle with the Eclipse
plug-in

Step 1: Create Bundle with the plug-in:
• Right-click on the Bundles tree and choose New/Bundle
• Specify the Bundle Name & click the Finish button

Step 2: Create the BundleActivator implementation class:
• Right-click on the Hello Bundle node in the Bundles tree and choose
Code Generate/Bundle Activator
• Implement the start & stop methods

Step 3: Edit the manifest file
• The Bundle-Activator header is generated automatically
• Add the additional headers

100

“Hello World” Eclipse

Creating a Hello World bundle with the Eclipse
plug-in

Step 4: Generate a bundle JAR file
• Right-click the Hello Bundle node and choose Pack
• Select a jar file name & location and click the Finish button

Step 5: Install the bundle in the framework, and start/stop it
• Right-click the Hello Bundle node and choose Install Bundle

